
UMIST Database for Astrochemistry UDfA, July 2014

A Short Guide to Unix

Catherine Walsh (with some update on plotting software from Tom Millar)

June 2009 (and June 2013)

Introduction

This is a brief introduction to Unix aimed at users more familiar with the Windows operating system. This

guide is designed to get you started quickly using a Unix computer.

Current Unix operating systems have a Graphical User Interface or GUI which looks and operates similar to

Windows. The power of Unix, however, lies in the use of a terminal in which commands are entered and
processes/programs are started and monitored.

Starting a terminal window varies between Unix distributions. As you would on a machine running Windows,
enter the main menu from the desktop screen and search for and open an application called Terminal. This

will open a mainly blank window with a % or > prompt, something similar to:

tjm@star.qub.ac.uk%

The text preceding the prompt is the network or local address of the computer into which you are currently

logged. You can type at the prompt in the usual manner, that is, the prompt accepts all keyboard input

including text, numbers and symbols. You can erase characters using the backspace key and you can move
about the characters already typed using the arrow keys.

Basic Commands

The general form of a Unix command is:

% command [-options] [arguments]

The bracketed fields are optional, however, some commands do require at least one argument and some also

change their function depending on the number and/or types of arguments. To execute the command, hit
the RETURN key. To check the function of any command, use:

% man command

This opens the Unix manual in the terminal window and will give you a comprehensive description of the
command along with each possible option the command can use and the number and types of arguments

the command requires. To scroll through the manual pages, use the RETURN key and to exit the manual

and return to the command prompt, hit the Q (standing for ‘Quit’) key.

For a short (one-line) description of a command, use:

% whatis command

To search for command using a keyword, use:

1

UMIST Database for Astrochemistry UDfA, July 2014

% apropos keyword

For example to search for commands which are related to printing, use:

% apropos print

To start with, a simple example:

% pwd

This command stands for print working directory and gives you the name and full path of the current direc-

tory.

Another simple command used regularly is:

% ls

This lists the contents of your current working directory in alphanumerical order. Two options are often used
with ls:

% ls -al

The -a option (standing for all) lists all contents including hidden system files and directories. The -l

option (standing for long list) lists files and subdirectories including file permissions, author, file size and
date created or last modified.

This command can be used with any directory as the argument e.g.:

% ls /home/docs/files/

This will list the files and subdirectories in the directory files regardless of the current working directory and

is an absolute directory address i.e. relative to the root directory, ‘/’.

% ls -l ../docs/files/

This is a relative directory address i.e. relative to the current directory. Here ‘../’ indicates the parent

directory of the current working directory. The current working directory has a similar shorthand, ‘./’.

Two further useful commands are the cat command and the more command.

% cat filename

% more ../docs/files/output.txt

The cat command prints the contents of a file to the terminal screen. The more command does the same
except it prints the contents one page at a time which the user can then scroll though by hitting the RETURN
key (line by line) or SPACE key (page by page). This is useful for long files which do not fit into the terminal
screen. To exit the more command before reaching the end of a file, hit the Q key. These commands are

useful if you wish to quickly view the contents of a file without altering its content.

Files and Directories

To change directory from the current directory, use the cd command:

% cd directory

For example, if you are in the directory docs and wish to change to a directory contained within this called

files, you can use either the relative pathway or the absolute pathway:

% cd files

% cd /home/docs/files/

2

UMIST Database for Astrochemistry UDfA, July 2014

Using the command cd on its own without arguments will take you to the default home directory. The home

directory also has a shorthand, ‘∼/’, i.e.:

% cd ∼/docs/

will take you to the directory called docs contained within home.

To make a new directory, use the mkdir command. You can make a new directory in any existing directory
including the current working directory:

% mkdir newdirectory

% mkdir /home/docs/files 2

To change the name of a file or directory, use the command mv. The first argument is the existing file or

directory name, the second is the new file or directory name:

% mv oldfilename newfilename

% mv olddirectoryname newdirectoryname

Some examples:

% mv outfile.txt outfile 1.txt

% mv /home/docs/files/ /home/docs/files 1/

The mv command is also used to move files and directories. In this case, the first argument is the file or

directory which is to be moved and the second argument is the new location with, or without, a change in
the name of the original file or directory:

% mv outfile.txt ../files 1/outfile 1.txt

% mv /home/docs/files /home/

The first example moves the file outfile.txt to the directory files 1 with the new name outfile 1.txt. The sec-

ond example moves the directory called files into the home directory alongside its previous parent directory
docs, without a name change.

To delete a file, use the rm command:

% rm outfile.txt

% rm ../docs/files/outfile 1.txt

To delete a directory, use the rmdir command:

% rmdir /home/docs/files

If the directory to be deleted contains subdirectories then the option -r must append the command (standing
for recursively):

% rmdir -r /home/docs/

The last command to do with the manipulation of files and directories is the cp command which copies files
and directories to the specified location with, or without, a name change. As with the mv command, there

are many uses and permutations of the cp command:

% cp filename newfilename

% cp directory ../newdirectoryname

% cp filename directory/newfilename

Some examples:

3

UMIST Database for Astrochemistry UDfA, July 2014

% cp outfile.txt ./outfile 1.txt

% cp /home/docs/files/ /home/old docs/

The first example creates a copy in the current directory with a new file name. The second example copies
the directory files to a different existing directory called old docs without a change in name. In the case of

files, if the file specified in the second argument already exists, it will be overwritten, thus care must always

be taken when using the mv and cp commands.

To avoid errors of this nature the option -i can be used with both commands to prompt for confirmation
that the overwriting can take place:

% mv -i outfile.txt ../docs/outfile 1.txt

Running Applications

Applications can also be run from the command prompt. The applications discussed are those which will be

used in the computer class. In a similar manner to how commands operate, application names are simply
typed at the command prompt along with the filename of the file you would like the application to open

with:

% applicationname filename

Most applications in Unix should be set up to run in any directory, however, you may find the absolute or

relative path to the application executable is required. To close a running application, CTRL and C are hit

simultaneously. To suspend an application, CTRL and Z are used. To resume a suspended application, the
command fg (standing for foreground) is used. If you would like the application to run in the background of

the terminal, & is typed after the filename:

% applicationname filename &

This leaves the terminal prompt free for further commands. Any application or program running through the

terminal is known as a process. To list all processes running (useful if you have many applications running

in the background), the command ps is used:

% ps

This will list each process running by PID (standing for Process IDentification). To terminate a process running

in the background, the kill command is used in conjunction with the respective PID:

% kill 256

Once killed, a process cannot be resumed. In Unix, the user has complete control over all processes which

are happening!

Text Editors

There are many text editors available in Unix with preferences dependent solely on the user. Examples of

text editors are Emacs, Vi, NEdit, KWrite, Nano and Textwrangler (MAC). For quick editing of short files I
(Catherine) personally use Nano. Nano is an in-terminal text editor which uses the keyboard to navigate

through files and perform functions (i.e. the mouse is not used). To open a file with Nano, at the command

prompt type:

% nano filename

In Nano, changes are saved using CTRL and O and the file exited using CTRL and X.

4

UMIST Database for Astrochemistry UDfA, July 2014

In Unix, there are no restrictions on how files are named (although restricted symbols, such as @ should be

avoided). Files which are to be opened with specific applications do not need specific file extensions (unlike
Windows). An exception to this are files which will be compiled as computer programs (see later). However,

it is good practice (and much clearer for the user) to use conventional file extensions, for example, ‘.txt’ for

text files and ‘.pdf’ for PDF files. It is also good practice to name files and directories without spaces due to
the syntax of entering commands on the command line. For example output file 1.txt is a better filename

than output file 1.txt as on the command line, the latter would need to be typed as:

% emacs output\ file\ 1.txt

Plotting

Again, there are many different plotting packages which are available in Unix with the package used depen-

dent on user preferences, the type of data to be plotted and the type of plot required.

The plotting software used in the computer sessions is a well-known, easy-to-use open source program called

Xmgrace. Xmgrace allows for a sophisticated approach to data manipulation but here we shall just consider

a simple application.

This program allows the user to read in an array (or several arrays) of data for plotting. The array of data to
be plotted is a subset of abundances selected from the output file written by the chemical kinetic code. The

species to be plotted and their associated abundances as a function of time are generated by a perl script,

dc.pl – for fuller details see ‘Introduction to Astrochemical Modelling’.

For our purposes, assume that the data to be plotted is contained in the file dc.dat. We invoke Xmgrace from
the same directory as dc.dat:

% xmgrace &

This opens a new window in which all the operations needed to display the data can be carried out through

a series of drop-down menus. To read in the data:

Data--Import--ASCII

In the new window highlight dc.dat. Load as NXY (the standard method for reading multiple columns data

where the x-values - here time in years - are contained in the first column and y-values in the subsequent
columns) and click OK.

The plotting window will now show a linear-linear plot of fractional abundances versus time. The axes need
to be re-scaled to log-log format to be useful. To do this, go to the main drop-down menu and choose:

Plot--Axes Properties

In the resulting menu window, perform the following operations:

Edit X-axis; Scale Logarithmic; Start 1000; Stop 1e8

Axis Label, Label String, Enter: Log Time (yr)

Click Apply at the bottom of the window and now repeat for the Y-axis. In this case choose Start and Stop

values of 1e-12 and 1e-3, respectively, and label the axis with the string Log Fractional Abundance /H2

The plot will now show the abundance plots of six species, each colour coded, as a function of time. The

next step is to customise the appearance of the curves – we can change line thickness, colour, style - solid,
dashed, dot-dashed, etc. In the main menu choose:

Plot--Set Appearance

The new window that opens contains information each of the 6 abundance curves, labelled (S0, ... S5), in

5

UMIST Database for Astrochemistry UDfA, July 2014

the same order as determined by dc.pl. In our default example, the order is O, OH, H2O, CO, HCO+, e−.

When the window opens the first entry (S0) is highlighted. Now we can alter the line properties of this
species (O). Default properties are indicated in the box (Type, Style, Width, Color) and can be changed by

clicking on the appropriate radio button. Change the default width to 2.0 and associate the proper species

name with S0 by entering ‘O’ in the Legend box. Click Apply and you will see that the black line width has
changed and that a small box has opened which indicates that the black line is atomic oxygen. Now repeat

for each species in turn, clicking Apply each time and when all six have been labelled click Accept to edit

this menu.

Finally, it is useful to label the graph itself with a title, and perhaps a subtitle. In the main menu select:

Plot--Graph Appearance

Enter a title and subtitle into the appropriate boxes and click Accept. You now have a fully labelled graph on

your desktop.

The final task is to save the plot to the hard disk and print it, either directly from Xmgrace or once Xmgrace

is closed. In the main menu:

File--Selection

Enter the name under which the project will be saved, each of these files should be named filename.agr. This

file contains all the specific choices you have made in producing the plot and can be opened at a future time

for further manipulation, if required.

In Selection, type dc.agr and click OK.

We now generate a file to plot. In the main menu:

File--Print Setup

You can change Page Orientation and Size if you wish. Click Apply and Accept. In the main menu, select:

File--Print

to plot the graph on the default printer. The postscript file that is printed is not saved as yet. To save the file

in your working directory, select:

File--Print Setup--Print to file

This saves the file as default.ps where default can be seen in the File name box. Click on this box to change

the name of the file to something more memorable. Click Apply and Accept to write filename.ps to your
working directory.

Graphics Viewers

The plots generated using Xmgrace will be postscript files with the extension ‘.ps’. Postscript graphics can be
viewed with a program called GhostView which is invoked using the command gv:

% gv graph.ps

This opens a new window displaying the plot.

Programming

Computer programming is incredibly straightforward in Unix. In basic terms, the program code is created

using a text editor and the file given the required file extension corresponding to the programming language

6

UMIST Database for Astrochemistry UDfA, July 2014

used. Examples are ‘.c’ for programs written using the C programming language, ‘.f’ for programs written

in FORTRAN and ‘.java’ for programs written using Java.

The program source code is then compiled using the corresponding compiler. This will generate an executable

file composed of binary code. Running the program involves invoking this executable on the command line
and (in theory) the program will then set off and do what it was programmed to! Usually, getting a program

to run correctly involves much testing and debugging of the source code.

The programming languages used in the computer class are FORTRAN and Perl. FORTRAN (derived from

FORmulae TRANslation)is a high-level programming language developed specifically for scientific and engi-
neering applications. FORTRAN is used extensively for numerically intensive programming. Perl is another

high-level language which provides powerful text processing facilities and as such is often used for the easy

manipulation of text files.

In the computer class, the computation is done using a program written in FORTRAN and the results ex-

tracted and displayed using scripts written in Perl. It will not be necessary for you to create or directly
change any computer code written in either language, therefore, the details of both programming languages

will not be covered here. Instead, I will simply describe how a program or script is compiled and executed.

FORTRAN

FORTRAN code is appended with the file extension ‘.f’. The code used is written in a specific FORTRAN

language known as FORTRAN 77. There are several compilers which will compile FORTRAN 77 and in the
class the compiler used is gfortran although the code runs equally well on other compilers such as g77:

% gfortran program.f

This will generate the default executable a.out providing there are no compilation errors. To run the exe-
cutable type:

% ./a.out

The program will run as required, again, providing there are no bugs in the program code. Recall that ‘./’
is a short cut for the current working directory. In the case of running locally generated executables, the

location of the executable must be specified.

The default name of the executable can be altered using the -o option followed by the replacement name:

% gfortran -o program.o program.f

Note the name of the executable directly follows the -o option. In this case to run the program now type:

% ./program.o

For complicated programs which consist of many parts or modules, a makefile is used. A makefile contains

the command list for compiling each file or module in turn and links all executables generated into one

‘master’ executable. To invoke a makefile simply type the command:

% make

If the makefile is called something other than makefile, the name of the makefile must follow the make

command:

% make mymakefile

Fortunately, in the computer class a makefile is used to recompile any altered code!

7

UMIST Database for Astrochemistry UDfA, July 2014

Perl

Perl has powerful text processing and manipulation facilities. In the computer class scripts written in Perl

are used to read, extract and process output from the numerical Fortran code. A file written in Perl has the

file extension ‘.pl’.

A script written using Perl is simply invoked by typing the name of the script in the command line:

% ./perl script.pl

Again, the ‘./’ is required to tell the terminal to look for this executable in the current directory.

Unlike FORTRAN code, the Perl code does not need to be compiled prior to execution as the program code
contains the following line:

!/usr/bin/perl

This tells the terminal where the required Perl compiler can be found and so it can compile and execute the
program in one instruction!

Often Perl scripts accept input from the command line depending on their function:

% ./display graph.pl output.txt graph.eps

This script could, for example, take the file output.txt and generate a plot called graph.eps. Perl scripts are

incredibly versatile!

In the computer class, the Perl script dc.pl is used in this way to generate data files for plotting from numer-

ical output. The folder also contains a second Perl script, rate13dc.pl, which generates the ODE subroutine
chemical kinetics package from the underlying UMIST Database for Astrochemistry (Rate13), via the com-

mand

% ./rate13dc.pl -c=H2 -o dcodes.f rate13.rates

where -c=speciesname tells the code that speciesname, in this case H2, will have its abundance calculated

from a conservation rather than a differential equation. By default, the script also uses charge conservation

to calculate the electron abundance. The -o flag sets the name of the output file, in this case a FORTRAN
file called dcodes.f and rate13.rates is the name of the file containing the reactions and their associated rate

coefficients. It is unlikely that we will have time to cover use of the ‘equation writer’ in the sessions.

The details of Perl do not need to be covered as all input for the scripts are accepted from the command line

as in the example above. To find out the input parameters (if any) a script requires, run the script with zero
input parameters. This will display a message explaining the types of input and the order in which they are

required for the script to run.

8

UMIST Database for Astrochemistry UDfA, July 2014

Summary

This table summarises the Unix terms, commands and programs covered in this short guide. The square

brackets indicate command options or arguments which are optional.

Command Description Syntax

/ Root directory
./ Current directory

../ Parent directory of current directory

∼/ Default home directory

man Unix manual % man command

whatis Short description of command % whatis command

apropos Search manual using keyword % apropos keyword

pwd Print working directory

ls [-al] List contents of directory % ls [directory]

cat Print contents of file to terminal % cat file

more Print scrollable contents of file to terminal % more file

cd Change directory % cd [directory]

mkdir Make new directory % mkdir newdirectory

mv [-i] Move, or change name of, files and directories % mv oldfile newfile

rm Delete files % rm file

rmdir Delete directories % rmdir directory

cp [-i] Copy files and directories % cp file directory/newfile

ps List all current processes by PID
kill Kill a process running in the background % kill PID

make Compile makefile % make [mymakefile]

nano Opens Nano (in terminal) text editor % nano [file]

nedit Opens NEdit (external window) text editor % nedit [file]

emacs Opens Emacs (external window) text editor % emacs [file]

gv Opens Ghostview graphics viewer % gv graph.eps

g77 FORTRAN 77 compiler % g77 program.f

gfortran FORTRAN 77 compiler % gfortran program.f

xmgrace Opens and runs Xmgrace plotting software % xmgrace

9

